10,955 research outputs found

    K2D2: Estimation of protein secondary structure from circular dichroism spectra

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Circular dichroism spectroscopy is a widely used technique to analyze the secondary structure of proteins in solution. Predictive methods use the circular dichroism spectra from proteins of known tertiary structure to assess the secondary structure contents of a protein with unknown structure given its circular dichroism spectrum.</p> <p>Results</p> <p>We developed K2D2, a method with an associated web server to estimate protein secondary structure from circular dichroism spectra. The method uses a self-organized map of spectra from proteins with known structure to deduce a map of protein secondary structure that is used to do the predictions.</p> <p>Conclusion</p> <p>The K2D2 server is publicly accessible at <url>http://www.ogic.ca/projects/k2d2/</url>. It accepts as input a circular dichroism spectrum and outputs the estimated secondary structure content (alpha-helix and beta-strand) of the corresponding protein, as well as an estimated measure of error.</p

    Linking genes to diseases: it's all in the data

    Get PDF
    Genome-wide association analyses on large patient cohorts are generating large sets of candidate disease genes. This is coupled with the availability of ever-increasing genomic databases and a rapidly expanding repository of biomedical literature. Computational approaches to disease-gene association attempt to harness these data sources to identify the most likely disease gene candidates for further empirical analysis by translational researchers, resulting in efficient identification of genes of diagnostic, prognostic and therapeutic value. Existing computational methods analyze gene structure and sequence, functional annotation of candidate genes, characteristics of known disease genes, gene regulatory networks, protein-protein interactions, data from animal models and disease phenotype. To date, a few studies have successfully applied computational analysis of clinical phenotype data for specific diseases and shown genetic associations. In the near future, computational strategies will be facilitated by improved integration of clinical and computational research, and by increased availability of clinical phenotype data in a format accessible to computational approaches

    Amplification of the Gene Ontology annotation of Affymetrix probe sets

    Get PDF
    BACKGROUND: The annotations of Affymetrix DNA microarray probe sets with Gene Ontology terms are carefully selected for correctness. This results in very accurate but incomplete annotations which is not always desirable for microarray experiment evaluation. RESULTS: Here we present a protocol to amplify the set of Gene Ontology annotations associated to Affymetrix DNA microarray probe sets using information from related databases. CONCLUSION: Predicted novel annotations and the evidence producing them can be accessed at Probe2GO: . Scripts are available on demand

    Oct4 Targets Regulatory Nodes to Modulate Stem Cell Function

    Get PDF
    Stem cells are characterized by two defining features, the ability to self-renew and to differentiate into highly specialized cell types. The POU homeodomain transcription factor Oct4 (Pou5f1) is an essential mediator of the embryonic stem cell state and has been implicated in lineage specific differentiation, adult stem cell identity, and cancer. Recent description of the regulatory networks which maintain ‘ES’ have highlighted a dual role for Oct4 in the transcriptional activation of genes required to maintain self-renewal and pluripotency while concomitantly repressing genes which facilitate lineage specific differentiation. However, the molecular mechanism by which Oct4 mediates differential activation or repression at these loci to either maintain stem cell identity or facilitate the emergence of alternate transcriptional programs required for the realization of lineage remains to be elucidated. To further investigate Oct4 function, we employed gene expression profiling together with a robust statistical analysis to identify genes highly correlated to Oct4. Gene Ontology analysis to categorize overrepresented genes has led to the identification of themes which may prove essential to stem cell identity, including chromatin structure, nuclear architecture, cell cycle control, DNA repair, and apoptosis. Our experiments have identified previously unappreciated roles for Oct4 for firstly, regulating chromatin structure in a state consistent with self-renewal and pluripotency, and secondly, facilitating the expression of genes that keeps the cell poised to respond to cues that lead to differentiation. Together, these data define the mechanism by which Oct4 orchestrates cellular regulatory pathways to enforce the stem cell state and provides important insight into stem cell function and cancer

    Comparing climatic suitability and niche distances to explain populations responses to extreme climatic events

    Get PDF
    Habitat suitability calculated from Species Distribution Models (SDMs) has been used to assess population performance, but empirical studies have provided weak or inconclusive support to this approach. Novel approaches measuring population distances to niche centroid and margin in environmental space have been recently proposed to explain population performance, particularly when populations experience exceptional environmental conditions that may place them outside of the species niche. Here, we use data of co-occurring species’ decay, gathered after an extreme drought event occurring in the SE of the Iberian Peninsula which highly affected rich semiarid shrubland communities, to compare the relationship between population decay (mortality and remaining green canopy) and (1) distances between populations’ location and species niche margin and centroid in the environmental space, and (2) climatic suitability estimated from frequently used SDMs (here MaxEnt) considering both the extreme climatic episode and the average reference climatic period before this. We found that both SDMs-derived suitability and distances to species niche properly predict populations performance when considering the reference climatic period; but climatic suitability failed to predict performance considering the extreme climate period. In addition, while distance to niche margins accurately predict both mortality and remaining green canopy responses, centroid distances failed to explain mortality, suggesting that indexes containing information about the position to niche margin (inside or outside) are better to predict binary responses. We conclude that the location of populations in the environmental space is consistent with performance responses to extreme drought. Niche distances appear to be a more efficient approach than the use of climate suitability indices derived from more frequently used SDMs to explain population performance when dealing with environmental conditions that are located outside the species environmental niche. The use of this alternative metrics may be particularly useful when designing conservation measures to mitigate impacts of shifting environmental conditions

    Aportaciones a la flora de AndalucĂ­a.

    Get PDF
    New data on the Andalusian flora. Palabras clave. Papaver, Erica, Convolvulus, Teucrium, flora, corología, Andalucía, España.Key words. Papaver, Erica, Convolvulus, Teucrium, flora, chorology, Andalusia, Spain
    • 

    corecore